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Table 1

Genes in Which Mutation or Altered Dosage
May Cause CMT

Gene Function

CMT1:
PMP22 Myelin structure/growth arrest?
Cx32 Gap-junction formation
MPZ Myelin structural protein,

homophilic adhesion
EGR2 Transcription factor
MTMR2a Protein tyrosine phosphatase/

dual-specificity phosphatase
NDRG1b Growth arrest/cell differentiation

CMT2:
NF-L Neurofilament organization

and regulation

a See Bolino et al. (2000).
b Kalaydjieva et al. (2000 [in this issue]) re-

cently described CMT1 genes primarily associ-
ated with autosomal recessive disease.

Charcot-Marie-Tooth disease (CMT) is the most com-
mon inherited disorder of the human peripheral nerve,
and, at a frequency of ∼1/2,500, it represents one of
the most common disease traits. It can be inherited
as an autosomal dominant, autosomal recessive, or X-
linked trait. In addition, many sporadic cases occur
and have often been shown to result from new dom-
inant mutations. The disease has generally been di-
vided into two major types, on the basis of results of
electrophysiologic studies. The type 1 form, CMT1,
is accompanied by decreased motor nerve conduction
velocities and primarily affects the myelin. The type
2 form, CMT2, manifests normal or slightly reduced
motor nerve conduction velocities with decreased am-
plitudes and primarily affects the axon.

In the past several years, much has been learned about
CMT1, with 112 linked loci delineated and 6 genes iden-
tified (reviewed in Lupski [1999] and Warner et al.
[1999]) (table 1). These genes encode proteins with var-
ious functions that are important for myelin formation,
structure, and integrity. However, from a genetic stand-
point, precious little has been learned about CMT2, be-
cause, to date, no single gene has been identified, despite
reports of the existence of four different CMT2-linked
loci (table 2). In this issue of the Journal, Mersiyanova
et al. (2000) provide substantive evidence that they have
identified the first CMT2 gene. The gene NF-L encodes
neurofilament light protein, which is one of three major
neurofilament protein constituents. Neurofilaments are
important for the structure and function of axons and
may be necessary for axonal transport, regeneration, and
longevity. Although Mersiyanova et al. report a single
mutation in a large Russian family segregating autoso-
mal dominant CMT2, they nevertheless provide impor-
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tant insights into peripheral nerve neurobiology and
point to other potential CMT2 genes.

Mersiyanova et al. (2000 [in this issue]) studied a
large six-generation family from Mordovia, Russia,
who segregated clinical and nerve conduction velocity
findings consistent with CMT2. After exclusion of the
four previously linked loci, the results of a genome-
wide search revealed linkage to markers mapping at
8p21. Historical recombinants further narrowed the
locus to a 16-cM interval that contained two excellent
positional candidate genes: NF-L, which encodes the
neurofilament light proteins, and NF-M, which en-
codes the neurofilament medium proteins. The entire
coding regions were screened for both genes. An ArC
transversion mutation predicted to result in a
Gln333Pro missense mutation was identified in the
first exon of NF-L. The mutation cosegregated with
the disease and was not found in 180 normal chro-
mosomes used as controls. This highly conserved
amino acid position is surrounded by the protein rod
domain, which is responsible for neurofilament as-
sembly (Carpenter and Ip 1996). Gln333 is located in
the coil 2B domain, which is the last and the largest
of four coil domains that form the rod region. A
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Table 2

CMT2-Linked Loci

Locus Genome Position Reference

CMT2A 1p35-36 Ben Othmane et al. (1993)
Timmerman et al. (1996)

CMT2B 3q13-q22 Kwon et al. (1995)
De Jonghe et al. (1997)
Ionasescu et al. (1996)

CMT2D 7p14 Ionasescu et al. (1996)
HMSNP 3q13.1 Takashima et al. (1997, 1999)

Leu394Pro mutation in the same coil domain in mice
resulted in a severe peripheral neuropathy phenotype
(Lee et al. 1994; Cleveland et al. 1996), whereas NF-
L null mice did not have a CMT-like phenotype sug-
gesting a dominant gain-of-function mechanism.

The neuronal cytoskeleton is composed of three in-
terconnected filaments: the actin microfilaments, micro-
tubules, and intermediate filaments (IFs). Neurofila-
ments (diameter 10 nm) are the major type of IFs in
adult neurons. In the higher eukaryotes, there are three
neurofilament proteins: light (NF-L), medium (NF-M),
and heavy (NF-H) neurofilament proteins. These three
neurofilament proteins share, among themselves and
with other members of the IF family, a central coiled
domain that is involved in the assembly of 10-nm fila-
ments (Julien 1999). The carboxy terminals of the NF-
H and NF-M subunits form side-arm projections at the
periphery of the neurofilaments. It is believed that phos-
phorylation of their KSP (Lys-Ser-Pro) repeats, particu-
larly in NF-H, increases their negative charge and
thereby causes increased neurofilament spacing (Julien
1999). KSP domains are substrates for the mitogen-ac-
tivated protein kinase family, which includes stress-ac-
tivated protein kinase 1 (Giasson and Mushynski 1996)
and extracellular signal-regulated kinases 1 and 2 (Veer-
ranna et al. 1998). Interestingly, an elevation of neu-
rofilament phosphorylation has been reported in the
sensory neurons of rats with diabetic neuropathy (Fer-
nyhough et al. 1999). NF-L seems to play the most im-
portant role in neurofilament assembly, since it is the
only neurofilament protein capable of organizing fila-
ments by itself (Geisler and Weber 1981; Carpenter and
Ip 1996), and it plays a part in regulation of the ex-
pression of other neurofilament proteins.

It is of note that Mersiyanova et al. (2000 [in this
issue]) allude to a potential final common pathway for
the pathologic process in CMT: a chain of events re-
sulting in axonal loss and muscle degeneration. Even in
CMT1, the demyelination is not the direct cause of mus-
cle atrophy and weakness but, instead, appears to act
by initiating axonal loss (Scherer 1999). Several lines of
evidence illustrate this process of axonal loss. First, al-
tered neurofilament phosphorylation and b-tubulin is-

otypes have been observed in CMT1 (Watson et al.
1994). Additionally, Trembler mice, which harbor a
PMP22 missense mutation, undergo local axonal de-
myelination, which results in decreased neurofilament
phosphorylation and slow axonal transport and reduced
axonal diameter, yet the myelinated regions of the same
axon have normal parameters (de Waegh et al. 1992).
The results of nerve xenograft studies using sural nerve
from patients with a PMP22 duplication or deletion
show distal axonal loss (Sahenk et al. 1999), whereas
the results of longitudinal nerve conduction velocity
studies in patients with duplication of PMP22 also sup-
port an axonal role in pathologic progression (Killian et
al. 1996; Garcia et al. 1998). Finally, when mutated in
mice, another myelin gene, MAG, which encodes mye-
lin-associated glycoprotein, results in axon degeneration
that correlates with a decrease in neurofilament phos-
phorylation and reduced axonal caliber (Yin et al. 1998).
Thus, mutations in myelin proteins can act as signals
that initiate a similar pathological process in the axons.
These findings again emphasize the importance of axon-
glia interactions.

As aptly pointed out by Mersiyanova et al. (2000 [in
this issue]), neurofilament proteins are involved in the
pathogenesis of several other neurological disorders, in-
cluding giant axonal neuropathy, amyotrophic lateral
sclerosis (ALS), and Parkinson and Alzheimer diseases.
The finding of an NF-L mutation associated with CMT2
supports a role for neurofilament proteins in this disease
and also delineates a potential final common pathway
for different forms of CMT1. Furthermore, since neu-
rofilament proteins apparently are key targets in axonal
pathology, their corresponding genes—as well as genes
for proteins that interact with or regulate neurofila-
ments—should be considered as candidate genes for
other CMT loci.
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